Repeated cocaine exposure during adolescence alters glutamic acid decarboxylase-65 (GAD65) immunoreactivity in hamster brain: correlation with offensive aggression.
نویسندگان
چکیده
Male Syrian hamsters (Mesocricetus auratus) treated with low-dose (0.5 mg/kg/day) cocaine throughout adolescence (P27-P56) display highly escalated offensive aggression. The current study examined whether adolescent cocaine exposure influenced the immunohistochemical localization of glutamic acid decarboxylase-65 (GAD65), the rate-limiting enzyme in the synthesis of gamma-aminobutyric acid (GABA), a fast-acting neurotransmitter implicated in the modulation of aggression in various species and models of aggression. Hamsters were administered low doses of cocaine throughout adolescence, scored for offensive aggression using the resident-intruder paradigm, and then examined for changes in GAD65 immunoreactivity in areas of the brain implicated in aggression control. When compared with saline-treated control animals, aggressive cocaine-treated hamsters showed significant differences in the area covered by GAD65 puncta in several notable aggression regions, including the anterior hypothalamus, the medial and central amygdaloid nuclei, and the lateral septum. However, no differences in GAD65 puncta were found in other aggression areas, such as the bed nucleus of the stria terminalis, the ventrolateral hypothalamus, and the corticomedial amygdala. Together, these results suggest that altered GABA synthesis and function in specific aggression areas may be involved in adolescent cocaine-facilitated offensive aggression.
منابع مشابه
Glutamic acid decarboxylase (GAD65) immunoreactivity in brains of aggressive, adolescent anabolic steroid-treated hamsters.
Chronic anabolic-androgenic steroid (AAS) treatment during adolescence facilitates offensive aggression in male Syrian hamsters (Mesocricetus auratus). The current study assessed whether adolescent AAS exposure influenced the immunohistochemical localization of glutamic acid decarboxylase (GAD65), the rate-limiting enzyme in the synthesis of gamma-aminobutyric acid (GABA), in areas of hamster b...
متن کاملDynamic regulation of glutamic acid decarboxylase 65 gene expression in rat testis.
Glutamate decarboxylase 65 (GAD65) produces gamma-aminobutyric acid, the main inhibitory neurotransmitter in adult mammalian brain. Previous experiments, performed in brain, showed that GAD65 gene possesses two TATA-less promoters, although the significance is unknown. Here, by rapid amplification of cDNA ends method, two distinct GAD65 mRNA isoforms transcribed from two independent clusters of...
متن کاملRepeated fluoxetine administration during adolescence stimulates aggressive behavior and alters serotonin and vasopressin neural development in hamsters.
Fluoxetine is the only selective serotonin reuptake inhibitor registered for the treatment of major depressive disorder in pediatric populations, despite reports that it is disproportionately associated with an array of adverse side effects that include agitation, hostility, and overt acts of pathological aggression and violence in youth. This study examined the effects of repeated adolescent f...
متن کاملInfluence of progesterone on GAD65 and GAD67 mRNA expression in the dorsolateral striatum and prefrontal cortex of female rats repeatedly treated with cocaine.
Female rats are intensely affected by cocaine, with estrogen probably playing an important role in this effect. Progesterone modulates the GABA system and attenuates the effects of cocaine; however, there is no information about its relevance in changing GABA synthesis pathways after cocaine administration to female rats. Our objective was to investigate the influence of progesterone on the eff...
متن کاملImmunoreactivity for GABA, GAD65, GAD67 and Bestrophin-1 in the Meninges and the Choroid Plexus: Implications for Non-Neuronal Sources for GABA in the Developing Mouse Brain
Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 1035 2 شماره
صفحات -
تاریخ انتشار 2005